Materials and Methods

- At thermal equilibrium, the Fourier heat flow equation applied to the test sample becomes:

\[\mathbf{Q} = \mathbf{R} \mathbf{G} \mathbf{T} \]

Where:
- \(\mathbf{R} \) = thermal resistance of the sample
- \(\mathbf{G} \) = heat flow transducer calibration factor
- \(\mathbf{T} \) = upper plate surface temperature
- \(\mathbf{Q} \) = heat flow transducer output
- \(\mathbf{R}_w \) = interface thermal resistance

- \(d \) = thickness of the sample

- The sample thermal conductivity, \(k \), is calculated from:

\[k = \frac{d}{\mathbf{R}_w} \]

- Calibrate the 2022 using known references such as water, glycerol, and silicone fluid at the temperatures of interest.
- Find conductivities at 283, 285, 287, ..., 293, 295K.
- Find and compare thermal conductivities versus temperatures.
- Write piece-wise function to model both sides of phase shifts.
- Select the appropriate length of a bi-layer junction such that hexadecane shifts phase and creates rectifier

Results

- Temperature-dependent Thermal Conductivity of Hexadecane

\[\text{Temperature (K)} \quad \text{Thermal Conductivity (W/mK)} \]

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Thermal Conductivity (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>272</td>
<td>0.110</td>
</tr>
<tr>
<td>277</td>
<td>0.210</td>
</tr>
<tr>
<td>282</td>
<td>0.310</td>
</tr>
<tr>
<td>287</td>
<td>0.410</td>
</tr>
<tr>
<td>292</td>
<td>0.460</td>
</tr>
<tr>
<td>297</td>
<td>0.510</td>
</tr>
<tr>
<td>302</td>
<td>0.550</td>
</tr>
</tbody>
</table>

- Hexadecane's \(\text{C}_{16} \text{H}_{34} \) has a melting point of 291K.
- The significant drop in conductivity slows down heat transfer.
- This will absorb heat and store it once a phase shift occurs.
- It may be possible to construct a bi-layer junction with hexadecane to act as a thermal-rectifier

Conclusions

The data shows that Hexadecane's thermal conductivity, \(k \), is temperature dependent and decreases significantly after a phase transition from solid to liquid. This drop in conductivity is due to differences in molecular structure.

While still in progress, a bi-layer junction could be constructed by using the properties of hexadecane to create a thermal rectifier – one-way heat flux transfer mechanism.

Lastly, the author is changed with the task to present real discovery and new knowledge from post-secondary academia and transfer that knowledge to a secondary environment. This goal can be accomplished via a Science, Technology, Engineering, and Mathematics (STEM) based lesson in a Project Based Learning [PBL] hybrid course of Algebra II / Physics offered at South Bend New Tech High School. The unit will cover topics such as linear functions, linear regression, piece-wise functions, proportional and function conversions, induction, radiation, convection, and heat energy transfer.

References

- Hexadecane to act as a thermal-rectifier
- It may be possible to construct a bi-layer junction with hexadecane that shifts phase and creates rectifier
- This will absorb heat and store it once a phase shift occurs.
- It may be possible to construct a bi-layer junction with hexadecane to act as a thermal-rectifier

Acknowledgments

The author would like to thank Ky-Quan Nguyen for his assistance in the laboratory. Teng Zhang for his consultation regarding thermal rectifiers, Dr. Tengfei Luo for his guidance, direction and instruction throughout the laboratory, Teng Zhang for his consultation regarding thermal rectifiers, and Thomas C. Adams, Dr. Rebecca Hicks, Jenny Frech, and Phil Cook for acting as facilitators and liaisons. Funding for this project was provided by the Center for Sustainable Energy at Notre Dame [CSEND] and the National Science Foundation [NSF].

For further information

Please contact tomadams2012@gmail.com. More information on this and related projects can be found at tomadams.wordpress.com.